
  

Surface vortex solitons 

Yaroslav V. Kartashov,1 Alexey A. Egorov,2 Victor A. Vysloukh,3 and Lluis Torner1 

1ICFO-Institut de Ciencies Fotoniques, and Universitat Politecnica de Catalunya, Mediterranean Technology Park, 
08860 Castelldefels (Barcelona), Spain 

2Physics Department, M. V. Lomonosov Moscow State University, 119899, Moscow, Russia 
3Departamento de Física y Matemáticas, Universidad de las Americas – Puebla, Puebla 72820, Mexico 

Yaroslav.Kartashov@icfo.es 
 

Abstract: We predict the existence of vortex solitons supported by the 
surface between two optical lattices imprinted in Kerr-type nonlinear media. 
We find that such surface vortex solitons can exhibit strongly noncanonical 
profiles, and that their salient properties are dictated by the location of the 
vortex core relative to the surface. A refractive index modulation forming 
the optical lattices at both sides of the interface yields complete stability of 
the vortex solitons in wide domains of their existence, thus introducing the 
first known example of stable topological solitons supported by a surface. 
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Vortex solitons, i.e. localized excitations which carry screw topological phase dislocations in 
nonlinear materials, play a central role in many branches of science, including superfluids, 
plasmas, Bose-Einstein condensates, and nonlinear optics (for recent reviews, see, e.g., [1,2]). 
Bright vortex solitons are typically prone to azimuthal modulation instabilities that cause their 
self-splitting into ground-state solitons which fly off the original state. Only a few examples 
of stable vortex solitons in uniform nonlinear materials have been found to the date, namely 
vortex solitons in materials with competing nonlinearities, in dissipative systems, and, more 
recently, in nonlocal media [3-5]. 
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Spatial modulation of the parameters describing light propagation in nonlinear media can 
have a strong stabilizing action on nonlinear vortices. Thus, it was shown in Refs. [6-9] that 
stable vortex solitons exist in discrete lattices, e.g. two-dimensional arrays of weakly coupled 
waveguides. This proposal was verified theoretically for vortex solitons in continuous lattices 
imprinted in cubic and saturable nonlinear materials [10,11]. Lattice vortex solitons (both off-
site and on-site) have been observed later in photorefractive crystals [12,13], where periodic 
lattices can be induced optically, as predicted in [14] and experimentally demonstrated in [15-
18]. Stable vortex solitons were also found in higher-order spectral bands of periodic optical 
lattices [19,20], in three-dimensional lattices [21,22], in radial Bessel lattices [23-25], in latti-
ces imprinted in materials with quadratic nonlinearities [26] and in photonic crystals [27,28]. 
Remarkably, vortex solitons can be strongly asymmetric in symmetric lattices [29] and in an-
isotropic lattices [30]. 

A new important possibility, never addressed to date to our knowledge, is the existence of 
vortex solitons at the surface between two different materials. Surface waves were studied in 
several areas of solid-state physics, as well as in nonlinear and in near-field optics (see, e.g., 
[31-35]). Nonlinearity may drastically alter the refraction scenario for optical beams and may 
result in bistability and transition between the regimes of total internal reflection and complete 
transmission [36,37]. Optical surface waves were observed in photorefractive materials with 
diffusion nonlinearity [38] and at the interface of uniform and layered media, including photo-
nic crystals [39]. Waveguide arrays fabricated with currently available technologies allow for-
mation of solitons at the interface between optical lattices, a concept put forward recently in 
Refs. [40,41]. Such surfaces support different types of solitons, including gap surface solitons 
[42]. Discrete surface solitons [43] were observed very recently in a landmark experiment 
conducted in waveguide arrays made in AlGaAs. 

In this paper we report on the existence and properties of vortex solitons supported by the 
interface of two different optical lattices imprinted in Kerr-type focusing nonlinear media. To 
the best of our knowledge, existence of surface vortex solitons has not been reported so far, 
not even for interfaces of uniform media, thus our findings constitute the first known example 
of stable topological soliton supported by a surface. We find that surface vortex solitons exhi-
bit strongly asymmetric profiles and noncanonical phase distributions [44,45]. Importantly, 
we find that because of the effects introduced by lattices forming the interface, surface vortex 
solitons are completely stable in wide domains of their existence. We reveal the relation exis-
ting between the interface parameters and the existence domains of surface vortex solitons. 

We consider propagation of laser radiation at the interface between two periodic lattices 
imprinted in focusing media with Kerr-type saturable nonlinearity, described by the nonlinear 
Schrödinger equation for the dimensionless complex amplitude of the light field q : 
 

 
22 2

2 2 2

1
( , ) .

2 1

q q q q q
i R q

S q
η ζ

ξ η ζ

⎛ ⎞∂ ∂ ∂ ⎟⎜= − + − −⎟⎜ ⎟⎟⎜∂ ⎝ ⎠∂ ∂ +
 (1) 

 
In Eq. (1) the transverse ,η ζ  and longitudinal ξ  coordinates are scaled in terms of the beam 
width and the diffraction length, respectively, and S  is the saturation parameter. The function 

( , ) ( ) ( /4)[1 cos( )][1 cos( )]R pH pη ζ δ η η ζ= + − Ω − Ω  stands for the transverse refractive 
index profile, where p  is the depth of the lattice, Ω  is its frequency, the function ( ) 0H η ≡  
for 0η ≤ , and ( ) 1H η ≡  for 0η > , and pδ  characterizes the height of the step in the 
constant refractive index. The profile of such lattice is shown in Fig. 1(c). We assume that the 
depth of the periodic refractive index modulation and the height of the refractive index step at 

0η =  are small compared with the unperturbed refractive index. We also assume that they 
are of the order of the nonlinear contribution due to the Kerr effect. 
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Such refractive index landscapes can be either fabricated technologically (in particular by 
ion implantation) in suitable saturable nonlinear media, or they might be induced optically in 
photorefractive crystals. In the latter case the periodic part of lattice might be created by inter-
fering four plane waves, while a non-uniform incoherent background illumination of the crys-
tal can produce a sharp step in the refractive index at 0η = . This can be achieved when the 
propagation direction for the background illumination is perpendicular to the ξ -axis, so that 
reshaping of the background wave due to diffraction is negligible over tenths of lattice periods 
in the ( , )η ζ  plane and, hence, the corresponding optically induced refractive index change 
can be accurately described by a step-like function ( )H η . Standard techniques [15-18] based 
on vectorial interactions can be employed to observe soliton formation. 

It should be pointed out that other types of nonlinear lattice interfaces could potentially be 
realized in photorefractive crystals by applying different voltages to different crystal parts. In 
this paper, for the sake of generality, we use the canonical model (1), since it holds for satu-
rable media with technologically imprinted lattice and simultaneously describes main qualita-
tive features of light propagation in optically induced lattices. Equation (1) admits several 
conserved quantities, including the power or energy flow 

 

 2
.U q d dη ζ

∞

−∞

= ∫ ∫  (2) 

 
We search for spatially localized vortex soliton solutions of Eq. (1) in the following form: 

r i[ ( , ) ( , )]exp( )q w iw ibη ζ η ζ ξ= + , where functions 
r

w  and iw  represent real and imaginary 
parts of light field, respectively, and b  is the propagation constant. The topological winding 
number (or vortex charge) m  of the complex field q  can be defined by the circulation of the 
gradient of the field phase i rarctan( / )w w  around the phase singularity, where the field vani-
shes. Here we focus on vortex soliton solutions with unit topological charge. Substitution into 
Eq. (1) yields the system 
 

 
2 22 2

r,i r i
r,i r,i r,i2 2 2 2

r i
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w w w
w bw Rw

S w wη ζ
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We solved system (3) numerically with a standard relaxation method. It is apparent that very 
far from the interface located at 0η =  the properties of vortex solitons supported by lattice 
shown in Fig. 1(c) do not differ substantially from the properties of their counterparts in per-
fectly periodic lattices. This situation changes as soon as the soliton energy concentrates in the 
lattice sites adjacent to the interface. In this case the internal structure is different for vortices 
shifted into lattice regions with lower (at 0η < ) or higher (at 0η > ) mean refractive index 
values. 

The simplest situation occurs when vortex phase singularity is located close to the point 
0η ζ= = . Some representative examples of the profiles of such vortex solitons are depicted 

in Figs. 1(a) and 1(b). By analogy with perfectly periodic lattice we term such vortex solitons 
“off-site”, since the phase singularity is located between the local lattice maxima. Four main 
intensity lobes (whose separation is minimal for the off-site case) are clearly resolvable in the 
vortex profile, but the lobes located at 0η >  are smaller than those located at 0η < . There-
fore, the vortices become strongly asymmetric, especially for large refractive index steps pδ . 
The phase distributions for asymmetric surface vortex solitons are non-canonical [44,45], in 
the sense that around a ring whose center coincides with the phase singularity, the phase does 
not increase linearly, but rather possesses alternating regions of slow (in the vicinity of local 
soliton intensity maxima) and fast growth (see Fig. 2 where a canonical phase distribution is 
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depicted). Increasing pδ  leads to stronger asymmetry. On the other hand, a growing periodic 
modulation depth p  leads to a stronger localization of the vortex energy near the local lattice 
maxima. 

 
Fig. 1. Field modulus distributions for vortex surface solitons at 8b = , 4.5p = , 0.05S = , 
and (a) 1pδ = , (b) 4pδ = . (c) Lattice profile at 4.5p =  and 1pδ = . Field modulus 
distributions for the highly asymmetric vortex solitons at 3b = , 4p = , 0.2S = , and (d) 

0.8pδ = , (e) 1.3pδ = , (f) 0.6pδ = . In all cases 4Ω = . Vertical dashed lines indicate 
the location of the interface. 

 
Fig. 2. (a) Phase distribution for surface vortex soliton depicted in Fig. 1(b). (b) Same but for a 
similar canonical vortex soliton supported by a uniform medium. 

 

(C) 2006 OSA 1 May 2006 / Vol. 14,  No. 9 / OPTICS EXPRESS  4053
#69296 - $15.00 USD Received 23 March 2006; revised 25 April 2006; accepted 25 April 2006



  

We found that for the fixed pδ  and p  there are lower lowb  and upper uppb  cutoffs for the 
existence of off-site surface vortex solitons. In contrast to canonical vortices, the ratio r i/U U  
 

 2
r,i r,iU w d dη ζ

∞

−∞

= ∫ ∫  (4) 

 
is not constant and varies with all the physical parameters, namelyb , p , and pδ . We found 
that close to the lower cutoff and the upper cutoff one of the ratios r,iU  abruptly tends to zero. 
The domain of existence for surface vortex solitons is presented in Fig. 3(a). The width of the 
existence domain in b  is maximal for 0pδ →  (in this case one has upp low 1/b b S= + ), and 
quickly shrinks with increasing pδ . 

Off-site surface vortex solitons cease to exist above a critical value of the step 
cr

pδ . For 
a fixed pδ  the width of the existence domain broadens with a decreasing lattice depth p . 
Though dependencies r,i( )U b  are non-monotonic close to the cutoffs, the total energy flow U  
still is the monotonically increasing function of propagation constant (Fig. 3(b)). The maximal 
energy flow carried by a surface vortex soliton residing at the interface quickly decreases with 
increasing pδ . We found that close to the lower cutoff surface vortex solitons are typically 
less localized than near the upper cutoff. This is especially pronounced at small or moderate 
values of 1pδ ∼ , when low-energy vortex solitons expand over several neighboring lattice 
sites. Moreover, expansion in the region 0η >  can be much more pronounced than that for 

0η < . Surface vortex solitons with strongly asymmetric shapes at 1pδ �  are typically well 
localized at both cutoffs. 

A particularly interesting property of surface vortex solitons is that the critical value of 
refractive index step 

cr
pδ  decreases with increasing lattice depth (see Fig. 3(c)), i.e. stronger 

asymmetries are achieved at interfaces between shallower lattices. The relation between the 
interface parameters and the domains of existence for vortex solitons can be intuitively under-
stood by considering the energy circulation in the vortex. The existence of stationary vortex 
requires exact balance between the flows of energy through the interface in positive and nega-
tive direction of η  axis. Such balance is no longer possible when the difference in refractive 
indices becomes too large. This is manifested in shrinking of the existence domain of surface 
vortex solitons by increasing the step pδ . 

One of the central results of this paper is that strongly asymmetric vortex solitons can be 
made completely stable in a substantial part of their existence domain. To rigorously and com-
prehensively analyze the stability of the whole family of vortex solitons, we searched for per-
turbed solutions of Eq. (1) in the form r i r i( )exp( )q w iw u iu ibξ= + + + , where 

r
( , , )u η ζ ξ , 

i( , , )u η ζ ξ  are real and imaginary parts of a small perturbation r,i r,i( )u w�  that can grow 
with a complex rate δ  upon propagation. Linearization of Eq. (1) around stationary solutions 

r
( , )w η ζ , i( , )w η ζ  obtained from Eqs. (3), at first order of perturbation theory, yields the sys-

tem of equations 
 

 

2 2 2 2 2
r,i i,r r i r i

r,i i,r2 2 2 2 2 2
r i r i

2 2

r,i r,i r,i i,r2 2

3 ( ) 2

[1 ( )] [1 ( )]

1

2

w w S w w w w
u u

S w w S w w

u bu Ru u
ξη ζ

⎛ ⎞+ + + ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ + + + +⎝ ⎠

⎛ ⎞∂ ∂ ∂⎟⎜+ + − + = ±⎟⎜ ⎟⎟⎜ ∂⎝ ⎠∂ ∂

 (5) 

 
where we assume that r,i exp( )u δξ∼ . We solved this system numerically in order to find the 
perturbation profiles and associated growth rates δ . The existence of perturbations having 
Re 0δ>  implies instability (termed exponential for Im 0δ = , and oscillatory for Im 0δ ≠ ) 
of the corresponding stationary solutions r,iw . The development of such perturbations should 
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result in strong distortion of input intensity distribution with propagation distance ξ . The ab-
sence of perturbations with Re 0δ >  reveals linear stability of the corresponding stationary 
solutions. Addition of small random or regular perturbations into such stable solutions may 
result only in small oscillations of the field amplitude around the input value. 

The outcome of our comprehensive stability analysis for off-site surface vortex solitons 
performed for various sets of parameters pδ  and p  is summarized in Fig. 4. We found that 
strongly asymmetric vortex solitons are stable in most part of their existence domain at mode-
rate 1p ∼  and high depths of periodic modulation. Our calculations reveal two instability 
bands located near the lower and upper existence cutoffs (Fig. 4(c)). The instability domain 
located near the upper cutoff is very narrow and not even visible in the plot. The width of the 
lower instability domain decreases with growing pδ . The instabilities encountered for asym-
metric surface vortex solitons are associated with a complex growth rate δ  and, hence, are of 
oscillatory type. The typical dependencies of the real part of the perturbation growth rate on b  
are depicted in Figs. 4(a) and 4(b). Note, that increasing the depth of the periodic modulation 
p  results in further reduction of the widths of lower and upper instability domains. Therefore, 

 
Fig. 3. (a) Domains of existence of surface vortex solitons at the ( , )p bδ  plane. (b) Energy flow 
versus propagation constant at 4.5p = . Points marked by circles correspond to solitons 
shown in Figs. 1(a) and 1(b). (c) Critical value of pδ  versus lattice depth. In all cases 4Ω = , 

0.05S = . 

 
the important result put forward by these findings is that despite the strong asymmetry of the 
surface vortex solitons, they can be still completely stable in the wide parameter domains. We 
attribute such stabilization to the periodic refractive index modulation existing at both sides of 
the interface. Namely, the mechanism behind stabilization of surface vortex solitons is expec-
ted to be similar to that for usual on- and off-site vortex solitons in uniform periodic lattices. 
This is consistent with the fact that an interface between a lattice and a uniform medium also 
supports surface vortex solitons, but we found all of them to be always strongly unstable on 
propagation. 

To confirm results of the above linear stability analysis we solved Eq. (1) directly with 
the input conditions r i0

( )(1 )q w iwξ ρ
=

= + + , where ( , )ρ η ζ  is a random function with a 
Gaussian distribution and variance 2

noiseσ . A split-step Fourier method was used to perform 
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the simulations. The accuracy of the results was tested by doubling the integration window 
and the number of grid points, and verifying that identical results were obtained. Typically 
grids with up to 1024 1024×  points and longitudinal step 0.0025dξ =  were used. The nu-
merical simulations always confirmed the predictions by the linear stability analysis. Asym-
metric surface vortex solitons belonging to the stable domain retain their input structure for 
huge distances, far exceeding any experimentally achievable crystal lengths (see Fig. 5(a)), 
while unstable representatives of the off-site vortex families decay via progressively growing 
oscillations of their intensity lobes (Fig. 5(b)). 

 
Fig. 4. Real part of perturbation growth rate versus propagation constant for 4.5p =  at 

0.5pδ =  (a) and 1pδ =  (b). (c) Stability and instability domains for surface vortex solitons 
on ( , )p bδ  plane at 4.5p = . Vortex solitons exist in the region between upper and lower solid 
lines. They are stable in the region above dashed line and oscillatory unstable in the region 
between dashed and lower solid lines. In all cases 4Ω = , 0.05S = . 

 
In addition, it is worth noticing that besides the simplest off-site surface vortex solitons 

we also found a variety of other asymmetric vortex solitons families. Representative examples 
of the on-site vortices that reside mainly at either side of the interface are shown in Figs. 1(d) 
– 1(f). Notice that upon searching for such solitons we translated the lattice by /π Ω  in the 
vertical direction for convenience. We found that on-site vortex solitons are much more 
sensitive to variations in the height of refractive index step pδ  and typically require ,p pδ <  
so that the existence domain substantially departs from that of their off-site counterparts. 
Nevertheless, on-site vortex solitons also exhibit strongly asymmetric shapes (see, e.g. Fig. 
1(e)), and can be made completely stable in suitable domains of their existence. Finally, we 
would like to remark that we also found that lattices with defocusing nonlinearity can support 
asymmetric surface vortex solitons as well. 

We thus conclude stressing that we have reported, for the first time to our knowledge, the 
existence of surface vortex solitons. We have found that such vortex solitons exist only when 
the refractive index at the surface does not exceed a critical value, which is dictated by the 
depth of the lattices. The surface vortex solitons can be made stable and robust under proper 
conditions, and exhibit strongly asymmetric and noncanonical nature. 
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Here we addressed the interface between two distinct periodic lattices with focusing nonline-
arrity, but results have implications for other physical settings, including lattices made in de-
focusing media. Also, we believe that our findings reported here motivate the search of other 
types of topological solitons supported by surfaces. 

 
 

Fig. 5. Propagation dynamics of surface vortex solitons with 8b =  (a) and 6.65b =  (b) at 
4.5p =  and 4pδ =  in the presence of white input noise with the variance 2

noise 0.01σ = . 
Vertical dashed lines indicate interface position. In all cases 4Ω = , 0.05S = . 
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