Surface plasmon based photonics is already recognized as a promising route for obtaining miniaturized optical devices [1]. The realization of future plasmonic chips requires the development of elements capable of controlling the propagation of surface plasmon polaritons (SPPs). So far, several key functionalities have already been demonstrated [2–4]. Among the proposed SPP elements, SPP Bragg mirrors have received particular attention [4,5]. Actually, Bragg mirrors are considered not only relevant elements on their own, but also integrated in other elements [6,7] or as building blocks for more complex devices, such as beam splitters [8], interferometers [4], or SPP launchers [9].

Different configurations have been proposed to act as SPP Bragg mirrors, and their reflectance properties have been analyzed [5]. There are, however, aspects of the performance of these devices not yet considered, which could have important consequences for their implementation. In this work we study the angular acceptance for reflection of SPP Bragg mirrors as a function of the angle of incidence, α_{inc}. This property, defined as the range of angles of incidence that are reflected by a Bragg mirror designed for a given α_{inc} and wavelength, can be crucial when Bragg mirrors are to be integrated in waveguides, or used to filter different propagation directions.

The analyzed samples, fabricated by electron beam lithography, consist of gratings of 10 Au lines, 60 nm high and 150 nm wide, lying on a 70 nm thick Au layer. This kind of Bragg mirror has been proved to be very efficient, with reflectance values close to 100% [5]. The periodicity of the grating, d, for the system to act as an SPP Bragg mirror for a SPP wavelength, λ_{SPP} and α_{inc}, is

$$d = \frac{\lambda_{\text{SPP}}}{2 \cos \alpha_{\text{inc}}}.$$ \hfill (1)

Figure 1(a) shows the scanning electron microscope (SEM) image of one of the fabricated samples for $\alpha_{\text{inc}}=30^\circ$. The sample is composed of a Bragg mirror and a diffracting line placed 30 μm away from the mirror. This diffracting line is used to locally launch two counterpropagating SPPs by focusing on it a perpendicularly incident laser beam (free-space wavelength $\lambda_0=800$ nm), as sketched in Fig. 1(a). The angular spreading of the SPPs excited in this way is controlled by the numerical aperture of the focusing objective. Figure 1(a) also includes the definition of α_{inc} and the propagation direction of the most relevant SPP wave vectors, k_{SP}.

The interaction of the Bragg mirrors with SPPs propagating on the metal film has been characterized by means of leakage radiation (LR) microscopy, a far-field technique that provides images whose intensity is proportional to that of the propagating SPP [10]. Figure 1(b) shows the evolution of the angular acceptance for reflection of SPP Bragg mirrors as a function of the incidence angle for four values of α_{inc}: 0°, 30°, 45°, and 60°. For each mirror, the periodicity has been adjusted for the desired α_{inc} according to Eq. (1).

In the absence of the mirror (SPP freely propagating toward the right), we have found that the divergence of the incident plasmon is 32° by plotting the intensity distribution of the SPP beam along a line parallel to the diffracting line [see dashed line in Fig. 1(e)]. In spite of this wide angular divergence, the SPP beam traveling toward the left-hand side is fully reflected (no transmission is detected after the mirror) for $\alpha_{\text{inc}}=0^\circ$. As the angle of incidence increases, the most divergent in-plane k-vectors of the beam are not reflected any more, and in transmission two lateral beams appear. The width of this lateral beam increases with α_{inc}, while the portion of the reflected beam gets narrower. Profiles across the transmitted beams give the angular aperture for which no trans-
mission is detected, which we identify as the angular acceptance for reflection, $\Delta \alpha_{\text{ref}}$. For instance, for $\alpha_{\text{inc}} = 30^\circ$ this angular acceptance is 7.5°. The values obtained in this way for different angles of incidence are summarized in Table 1. The results show that the SPP Bragg mirror's angular acceptance for reflection strongly decreases as α_{inc} increases.

The reflectivity of the considered kind of SPP mirrors is based on the 1D photonic bandgap opened by a Bragg grating. The analysis of the dispersion relation of SPPs propagating on corrugated surfaces can thus help us to understand this angular dependence. To obtain these dispersion relations we have computed, by using the differential method [11,12], the reflectivity under p-polarized incidence of a 70 nm thick gold film on glass whose upper interface is textured by a grating of gold ridges (60 nm high, 150 nm wide) with rectangular profiles, analogous to the Au lines used to fabricate our SPP Bragg mirrors. The minima in the reflectivity of this corrugated thin film are associated to the excitation of surface modes, thus providing the dispersion relation of SPP propagating on it.

Figure 2(a) shows the dispersion diagram obtained for a surface decorated with a grating of periodicity $d = 455$ nm when the SPP travels at 30° from the grating normal ($\alpha_{\text{inc}} = 30^\circ$). As expected from Eq. (1), a bandgap around $\lambda_0 =$ 800 nm appears at the edge of the first Brillouin zone. Figure 2(b) summarizes the evolution of the bandgap width for different α_{inc}, all of them for systems intended for having gaps at $\lambda_0 =$ 800 nm. It can be observed that, as α_{inc} increases, the bandgap width decreases, in good agreement with the behavior observed for $\Delta \alpha_{\text{ref}}$ as well as with the result shown in Ref. [13]. A coarse calculation can be used to translate the bandgap width to $\Delta \alpha_{\text{ref}}$. In reciprocal space Eq. (1) can be written as $G = 2k_n^{\text{inc}}$, with G the reciprocal vector of the Bragg grating, and k_n^{inc} the projection of the incident SPP wave vector along the grating normal $\left[k_n^{\text{inc}} = (2 \pi / \lambda_{\text{SPP}}) \cos \alpha_{\text{inc}} \right]$. A finite width bandgap implies that a range of k_n^{inc} can indeed be reflected. For fixed α_{inc}, this corresponds to the energy gap $\Delta \lambda_{\text{SPP}}$ given by the dispersion diagram. If we now fix λ_{SPP} we can calculate the α_{inc} gap, that is, $\Delta \alpha_{\text{ref}}$. The $\Delta \alpha_{\text{ref}}$ values obtained from this calculation are included in Table 1, showing good agreement with the experimental results coming from the LR images of the mirrors.

To get a deeper insight of the SPP on the analyzed gratings, we consider the isofrequency contour diagrams of the system. These diagrams provide the behavior of a SPP propagating along all the different directions of the surface. They can also be calculated as the dispersion diagrams above, i.e., by obtaining the reflectivity maps of the films for a fixed energy and p-polarized light incident in all directions. Moreover, the isofrequency contours can be experimentally obtained by means of leakage radiation measurements [14]. In fact, an appropriate lens set in the LR micro-

![Fig. 1](image1.png)

Fig. 1. (Color online) (a) SEM image of one fabricated SPP Bragg mirror ($\alpha_{\text{inc}} = 30^\circ$ here). The wave vectors (k_{SP}) of the incident (inc), reflected (r), transmitted (t) and free propagating (no-int) surface plasmons are sketched in the figure. (b) Leakage radiation images of SPPs impinging on mirrors at $\alpha_{\text{inc}} = 0^\circ$, 30°, 45°, and 60°. (c) Intensity cross-cuts along the lines as indicated in the inset (Bragg mirror at 30°). The dashed (blue) line shows the angular spreading of the transmitted beam; the solid (red) line corresponds to the transmitted beam.

Table 1. Evolution with α_{inc} of the Acceptance Angle for Reflection, $\Delta \alpha_{\text{ref}}$, for SPP Bragg Mirrors

<table>
<thead>
<tr>
<th>α_{inc} ($^\circ$)</th>
<th>LR, exp.</th>
<th>Theo.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mirrors</td>
<td>Fourier Disp.</td>
</tr>
<tr>
<td>0</td>
<td>> 32</td>
<td>49±1.0</td>
</tr>
<tr>
<td>30</td>
<td>7.5±0.5</td>
<td>6±1.0</td>
</tr>
<tr>
<td>45</td>
<td>3.5±0.5</td>
<td>3.5±1.0</td>
</tr>
<tr>
<td>60</td>
<td>2±0.5</td>
<td>1.4±0.5</td>
</tr>
</tbody>
</table>

LR columns correspond to the experimental values extracted from LR images of Bragg mirrors (mirrors) and the Fourier plane of gratings (Fourier). Theo. columns summarize the values extracted from the calculated dispersion (Disp.) and isofrequency (Isofreq.) diagrams.

![Fig. 2](image2.png)

Fig. 2. (a) Calculated dispersion relation for SPP propagating on a Au surface decorated with a Bragg grating. The solid line represents the light line. The dashed line delimits the first Brillouin zone. (b) Evolution of the bandgap width with α_{inc}.

September 15, 2007 / Vol. 32, No. 18 / OPTICS LETTERS 2705
Bragg mirrors is very good. Finally, Figs. 3(e) and 3(f) show the calculated isofrequency diagrams for the gap can be determined, and the obtained results are shown in Table 1. The agreement with the angular extension of one-dimensional plasmonic crystal [15].

This work was supported by the European Network of Excellence Plasmo-Nano-Devices. M.U.G. thanks the Spanish Ministry of Education for funding under the “Ramón y Cajal” program. A.L.S. is grateful to the Lisa Meitner programme of the Austrian Scientific Foundation and the Russian Foundation for Basic Research, grant 06-02-08147, for their support.

References