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Rotating surface solitons
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We introduce a novel type of surface waves that form at the edge of guiding structures consisting of several
concentric rings. Such surface waves rotate steadily upon propagation and, in contrast with nonrotating
waves, for high rotation frequencies they do not exhibit power thresholds for their existence. There exists an
upper limit for the surface wave rotation frequency, which depends on the radius of the outer guiding ring
and on its depth. © 2007 Optical Society of America
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Under appropriate conditions light can attach to the
boundary of materials with different nonlinear prop-
erties, which results in surface wave formation. The
properties of such waves differ substantially from the
properties of solitons in uniform materials. Thus,
surface waves usually require threshold power for
their formation, which is determined mostly by the
difference in refractive indices of materials forming
the interface and thus can be made remarkably small
in semi-infinite waveguide arrays (or lattices) pos-
sessing shallow refractive index modulations [1,2].
Lattice interfaces support not only fundamental [1,2]
but also gap surface solitons [3–6]. In two dimensions
lattice edges may take on complex shapes and sup-
port rich families of nonlinear surface waves [7,8].

In this Letter we introduce a new type of two-
dimensional surface waves that exist at the edge of
guiding structures consisting of several concentric
rings, with a refractive index modulation inside the
structure, which is periodic along the radial coordi-
nate. The nonzero curvature of the inner and outer
rings of such a structure drastically alters the prop-
erties of surface excitations and affords the existence
of rotating surface solitons. Note that solitons in in-
finite ringlike structures were studied in Bessel lat-
tices [9–12], in photonic bandgap ring fibers [13], and
in radially periodic potentials [14,15], while experi-
mental observation of light localization in ring struc-
tures was performed in [16]. Here we show that a fi-
nite ring structure gives rise to rotating surface
waves that, in contrast to nonrotating waves, do not
feature power thresholds for their formation if rota-
tion frequency is high enough. The maximal possible
rotation frequency increases with the power carried
by the surface soliton.

Our analysis is based on the nonlinear Schrödinger
equation for the field amplitude q of laser beam
propagating along the � axis in a focusing cubic me-
dium with a transverse refractive index modulation:
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where ��=�2 /��2+�2 /��2 is the Laplacian, the trans-

verse � ,� and the longitudinal � coordinates are nor-
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malized to the beam width and diffraction length, re-
spectively, p stands for the lattice depth, and the
function R�� ,�� describes the transverse refractive
index profile. We set R=cos2��r� for r�rout and R
=0 for r�rout, where r2=�2+�2 is the radius, rout
= �2n−1�� /2� is the outer radius of the guiding
structure, � is the radial frequency, and n sets the
number of rings. Figure 1(a) shows an example of
such a structure with n=5. Such structures can be
fabricated permanently [13] or they can be induced

Fig. 1. (Color online) (a) Ring guiding structure corre-
sponding to n=5. Field modulus distributions for surface
solitons at (b) b=6.45, 	=0, (c) b=7, 	=0.1, (d) b=6.45, 	
=0.1, (e) b=9.3, 	=0.4, and (f) b=7, 	=0.4. (c) In all plots
p=10 and �=2. White circles indicate the center of the
outer ring of guiding structure. In (b)–(e) n=5, while in (f)

n=3.
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optically in suitable crystals [16]. For concreteness,
we set �=2.

We look for rotating solitons of Eq. (1) in the form
q= �u��� ,���+ iv��� ,����exp�ib�� (here u ,v are the real
and imaginary amplitudes and b is the propagation
constant) in the rotating coordinate system ��
=� cos�	��+� sin�	�� and ��=� cos�	��−� sin�	��,
where 	 is the rotation frequency. In these coordi-
nates, the equations for the field components are
written as (we omit the prime coordinates) 	��v /��
−	��v /��+ �1/2���u+u�u2+v2�+pRu=bu and
	��u /��−	��u /��+ �1/2���v+v�u2+v2�+pRv=bv.

The profile of nonrotating solitons �	=0� residing
in the outermost ring is shown in Fig. 1(b). The en-
ergy flow U=/−



 �q�2d�d� of such a soliton is a non-
monotonic function of b [Fig. 2(a), curve 1] and there
exists a lower cutoff on b for the soliton to exist. Low-
amplitude solitons tend to penetrate deep into the
ring structure [Fig. 1(b)]. Thus, the behavior of non-
rotating solitons at such an interface is similar to be-
havior of surface solitons at interfaces of truly peri-
odic lattices [7,8]. This is mostly apparent for n→
,
when the curvature of the outer ring tends to zero
and one gets effectively the interface of quasi-1D lat-
tice. The minimal energy flow and the cutoff bco for
	=0 vary only slightly with the number of rings in
the structure.

This picture changes drastically as soon as soliton
rotation takes place. While for small rotation fre-
quencies 	�0.01 the dependence U�b� does not
change its character, at a certain minimal frequency
this curve experiences a substantial deformation so
that U vanishes at the cutoff [Fig. 2(a), curve 2].
Even though slowly rotating surface solitons are
well-localized far from the cutoff [Fig. 1(c)], at b
→bco they show a tendency for expansion not only in
the radial direction, but also in the azimuthal one,
gradually acquiring an extended azimuthal shape
[compare profiles in Figs. 1(d) and 1(b) corresponding
to the same values of b]. For higher 	 values the en-
ergy flow is a monotonically increasing function of b.

Thus, one of the central findings of this Letter is
that setting surface solitons into rotation at the edge
of concentric ring lattice makes them thresholdless.
The cutoff bco for soliton existence monotonically in-
creases with increase of 	 [Fig. 3(a)]. The larger the

Fig. 2. (a) Energy flow versus propagation constant for 	
=0 (curve 1), 0.1 (curve 2), and 0.15 (curve 3). Points
marked by circles correspond to soliton profiles shown in
Figs. 1(b)–1(d). (b) Energy flow versus rotation frequency
for different propagation constants. In all cases p=10, �

=2, and n=5.
difference bco�	�−bco�0� the stronger the soliton local-
ization along the radial coordinate, even when b
→bco. For high rotation frequencies low-power soli-
tons remain well-localized in the outer ring of the lat-
tice, but they always strongly expand along the azi-
muthal direction [Figs. 1(e) and 1(f)]. Concentration
of light in the outermost ring even at low powers can
be explained by the considerable centrifugal forces
acting on rotating states, which result in light expul-
sion from the central lattice region and which are
counterbalanced by repulsion from its outer edge. At
high energy flows rotating surface solitons are well-
localized.

We found that for a fixed b there exists a maximal
possible value of rotation frequency. Thus, for suffi-
ciently large b�bco�0� the energy flow decreases with
	 and vanishes when 	→	m [Fig. 2(b)]. At 	→	m, ro-
tating solitons strongly expand along the azimuthal
direction and acquire an extended shape along the
ring. Importantly, surface solitons with higher ener-
gies can rotate with higher angular frequencies. In
cubic nonlinear media the lattice impacts stronger
high-amplitude solitons than low-amplitude ones, in
the sense that larger transverse phase tilts are nec-
essary for high-amplitude solitons to move across the
lattice. This compensates the higher centrifugal
forces acting on such states. The maximal rotation
frequency increases with b and goes to zero when b
→bco�	=0� [Fig. 3(b)]. This is consistent with the fact
that linear eigenstates of circular guiding structures
modulated in azimuthal direction does not rotate.
Nonrotating eigenstates can be represented as a su-
perposition of exp�im�� and exp�−im�� angular har-
monics of equal amplitudes. Rotating soliton solu-
tions might emerge from superposition of angular
harmonics with unequal amplitudes, acquiring differ-
ent phase shifts on propagation due to nonlinearity.

Fig. 3. (a) Propagation constant cutoff versus rotation fre-
quency at n=5. (b) Maximal rotation frequency versus
propagation constant at n=5. (c) Maximal rotation fre-
quency versus number of rings in guiding structure at b
=9. In all cases p=10 and �=2.
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Increasing lattice depth p at sufficiently high 	
does not result in qualitative modification of soliton
properties. The maximal rotation frequency for soli-
tons in shallower lattices may be smaller than that in
deeper lattices, provided that the propagation con-
stants are selected in such way that at 	=0 the soli-
ton energy flows in both lattices coincide. This is in
agreement with intuitive expectations, since the
trapping capability of deeper lattices is higher, hence
solitons in such structures may withstand faster ro-
tations. The maximal rotation frequency strongly de-
pends on the number of rings in the lattice (i.e., on
rout). For a fixed b the maximal rotation frequency
rapidly diminishes with increasing n [Fig. 3(c)], i.e.,
guiding structures having smaller outer radius may
support solitons that rotate faster. The propagation
constant cutoff for rotating solitons growths with n.

Integration of Eq. (1) with input conditions q��=0
= �u+ iv��1+��, where ��� ,�� stands for broadband
noise with variance 
noise

2 , show that rotating solitons
are stable for both small (in this case b should not be
too close to bco, where derivative dU /db becomes
negative) and high rotation frequencies (in this case
solitons are stable in the entire existence domain in
b). Figure 4 shows stable rotation of well-localized

Fig. 4. (Color online) Snapshot images showing stable ro-
tation of surface solitons at (a) 	=0.1, n=5 (b) 	=0.29, n
=5, (c) 	=0.1, n=3, and (d) 	=0.51, n=3. In all cases input
solitons correspond to b=8, p=10, and �=2. The right out-
ermost image in each plot shows input field modulus distri-
bution in the presence of white noise with variance 
noise

2

=0.01, while two other images superimposed onto input
distribution are taken at proper distances exceeding �
=500. White circles indicate the center of the outer ring of
guiding structure.
surface solitons with moderate frequencies and soli-
tons strongly elongated in the azimuthal direction
with high rotation frequencies close to 	m for corre-
sponding b and n values. We did not observe any ra-
diative losses even for rapidly rotating solitons after
propagation over considerable distances. Rotating
surface solitons discussed here may arise upon devel-
opment of azimuthal modulational instabilities in cir-
cular structures with multiple guiding rings [17].

Summarizing, we introduced a new type of rotating
surface solitons that exist at the edge of guiding
structures consisting of several concentric rings.
Such surface solitons may be thresholdless for high
enough rotation frequencies. High-amplitude surface
waves were found to rotate faster than their low-
amplitude counterparts.
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